
PYTHON
PYPROJECT.TOML +

VERSIONING +
PUBLISHING

AGENDA
• (Part 0: Migrating to pyproject.toml)

• Part 1: Dealing with Python package versions

▪ �� We have multiple places for the version!

• Part 2: Automating the busywork

▪ Publishing the package on GitHub
▪ Publishing the package on PyPI

����� Consistency ����� Less manual work

0: MIGRATING TO
PYPROJECT.TOML

• Mostly straight-forward

▪ e.g. just filling in the fields of the file

• setuptools' where

• �� Dealing with the package version in ocrd-
tool.json → Motivation for setuptools-ocrd

1: DEALING WITH VERSIONS –
THE CHALLENGE

We have multiple sources for the program version:

• Python package (pyproject.toml)

• ocrd-tool.json

→ Part 1A

• git tag

→ Part 1B

1A: SOURCING THE VERSION
FROM ocrd-tool.json

• Before pyproject.toml, we programatically
read the version in setup.py

• �� Can't do that anymore with pyproject.toml

• ��� We now have

▪ setuptools plugin
▪ reads version from ocrd-tool.json
▪ makes sure ocrd-tool.json is in the sdist

setuptools-ocrd

https://pypi.org/project/setuptools-ocrd/
https://pypi.org/project/setuptools-ocrd/

HOW TO USE SETUPTOOLS-OCRD
• Include as part of the build-system in
pyproject.toml:

• Building the Python package (e.g. python -m
build) should now produce a package (and sdist)
with the correct version!

[build-system]
requires = ["setuptools>=61.0.0", "wheel", "setuptools-ocrd"]

[project]
...
#version = "1.2.3" ← Remove this line
dynamic = ["version", ...] # Make it dynamic

1B: PYTHON PACKAGE VERSION
VS GIT TAG

• �� Can't source the package version from the git
tag, because we need it in ocrd-tool.json

• ����� But we can: Check git tag on tag push in CI

GitHub Action workflow release.yml (shortened!):

on:
push:

tags:
- "v*.*.*"

jobs:
[...]
build:

needs: test
runs-on: ubuntu-latest
steps:

[...]
- name: Check git tag vs package version

run: .github/workflows/release-check-version-tag

2: AUTOMATING THE BUSYWORK
• Goal: Have a consistent upload of

▪ git tag
▪ GitHub release
▪ PyPI release

• ����� Trigger GitHub + PyPI releases by git tag

GITHUB ACTIONS WORKFLOW

• The following YAML snippets are shortened!
• Full example in the
• This should be possible to do with CircleCI, too

dinglehopper project

https://github.com/qurator-spk/dinglehopper/blob/master/.github/workflows/release.yml
https://github.com/qurator-spk/dinglehopper/blob/master/.github/workflows/release.yml

TRIGGER ON GIT TAG PUSH
name: release

on:
push:

tags:
- "v*.*.*"

[continued]

BUILD PYTHON PACKAGE
jobs:

build:
[... After check from part 1 ...]

- name: Build package

run: |
 python3 -m pip install --upgrade build
 python3 -m build

- name: Upload dist
uses: actions/upload-artifact@v4
with:

name: dist
path: dist/

CREATE A GITHUB RELEASE (INCL. FILES)

(Uses GitHub's implicit credentials.)

github-release:

steps:

- name: Download dist
uses: actions/download-artifact@v4
with: { name: dist, path: dist/ }

- name: Create release on GitHub

uses: softprops/action-gh-release@v1
with:

files: dist/*

CREATE A PYPI RELEASE

(Uses PyPI's .)

pypi-publish:
environment:

name: pypi
url: ${{ env.PYPI_URL }}

permissions:
id-token: write

steps:

- name: Download dist
uses: actions/download-artifact@v4
with: { name: dist, path: dist/ }

- name: Publish package distributions to PyPI
uses: pypa/gh-action-pypi-publish@release/v1

trusted publishing

https://docs.pypi.org/trusted-publishers/
https://docs.pypi.org/trusted-publishers/

FUTURE WORK?
• Unfortunate that ocrd-tool.json requires a

version

▪ no single-sourcing from git!

• .github/workflows/release-check-

version-tag could be a reusable GitHub Action

Probably not:

• It's good that the above release workflow is
composed of different steps

▪ Don't combine into a GitHub Action to retain
flexibility

▪ Copying the YAML is good enough

• CircleCI

QUESTIONS?

